公式:\(L(y_i, f(x_i)) = \begin{cases} 0& y_i = f(x_i)\\ 1& y_i \neq f(x_i) \end{cases}\)
torch.nn.NLLLossn:样本数量m:类别数量i个样本属于分类j的标签,它是0或者1i预测为j分类的概率torch.nn.CrossEntropyLossl(p,p): p的熵,当一个分布一定时,熵为常数值l(p,q): p和q的交叉熵torch.nn.KLDivLosstorch.nn.HingeEmbeddingLosstorch.nn.CosineEmbeddingLosstorch.nn.L1Losstorch.nn.MSELosstorch.nn.SmoothL1Losstorch.nn.MarginRankingLoss